Write your name here Surname	Other n	names
Pearson Edexcel International GCSE	Centre Number	Candidate Number
Further Pu Level 2 Paper 2	ure Math	ematics
Sample assessment material for first Time: 2 hours	teaching September 2017	Paper Reference 4PM1/02
Calculators may be used.		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You must NOT write anything on the formulae page.
 Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

PEARSON

S51837A
©2016 Pearson Education Ltd.

International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = $\pi r \times \text{slant height}$

Volume of sphere =
$$\frac{4}{3}\pi r^3$$

Series

Arithmetic series

Sum to *n* terms, $S_n = \frac{n}{2} [2a + (n-1)d]$

Geometric series

Sum to *n* terms,
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity,
$$S_{\infty} = \frac{a}{1-r} |r| < 1$$

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for $|x| < 1, n \in \mathbb{Q}$

Calculus

Quotient rule (diferentiation)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

Trigonometry

Cosine rule

In triangle ABC: $a^2 = b^2 + c^2 - 2bc \cos A$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$

$$cos(A - B) = cos A cos B + sin A sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Answer all ELEVEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1	The	nth	term	of	a	geometric	series	is	$3e^{(1-2n)}$
---	-----	-----	------	----	---	-----------	--------	----	---------------

Find the sum to infinity of this series.

Give your answer in the form $\frac{ae}{e^b-1}$ where a and b are integers to be found.	(5)

(Total for Question 1 is 5 marks)

2	Find the set of values of x for which	
	(a) $3 + x < 2x - 1$	(1)
	(b) $x(x-1) > 6$	(1)
	(b) $\lambda(\lambda-1) \geq 0$	(3)
	(c) both $3 + x < 2x - 1$ and $x(x - 1) > 6$	(1)
		(1)
	(Total for Question 2 is 5 mar	rke)
	(Total for Question 2 is 5 mai	113)

	$\overrightarrow{OA} = 4\mathbf{i} + 3\mathbf{j}$	$\overrightarrow{OB} = 8\mathbf{i} + p\mathbf{j}$	and $\left \overrightarrow{AB} \right = 2$	$\sqrt{13}$
(a) Find the po	ossible values of p .			(3)
Given that $p >$	0			
(b) find a unit	vector parallel to \overrightarrow{AB}			(2)

4	$f(x) = 2x^3 + px^2 + qx + 12$ $p, q \in \mathbb{Z}$	
	Given that $(x + 3)$ is a factor of $f(x)$ and that when $f'(x)$ is divided by $(x + 3)$ the remaind	er is 37
	(a) show that $p = 1$ and find the value of q	
		(6)
	(b) hence factorise $f(x)$ completely	(2)
	(c) show that the equation $f(x) = 0$ has only one real root.	
		(2)

	Question 4 continued
A	
A.	
HIS AREA	
iii	
DO NOT WRITE IN	
0	
O	
02	
V)	
Z	
WRITE IN THIS AREA	
5	
Ž	
ă	
4	
02	
<u>va</u>	
<u>~</u>	
9	
DO NOT WRITE IN THIS AREA	
	(Total for Question 4 is 10 marks)

5	(a) Show that $cos(A - B) - cos(A + B) = 2 sin A sin B$	(2)
	(b) Hence express $2 \sin 5x \sin 3x$ in the form $\cos mx - \cos nx$ where m and n are integers, giving the value of m and the value of n ,	(1)
	(c) (i) Find $\int 4\sin 5\theta \sin 3\theta d\theta$	
	(ii) Hence evaluate $\int_0^{\frac{\pi}{6}} 4\sin 5\theta \sin 3\theta d\theta$, giving your answer in the form $\frac{a\sqrt{b}}{c}$ where a, b and c are integers.	
		(4)

3	

6	Solve the equation $\log_2 x + 6\log_x 2 = 7$

7 The curve *C* with equation

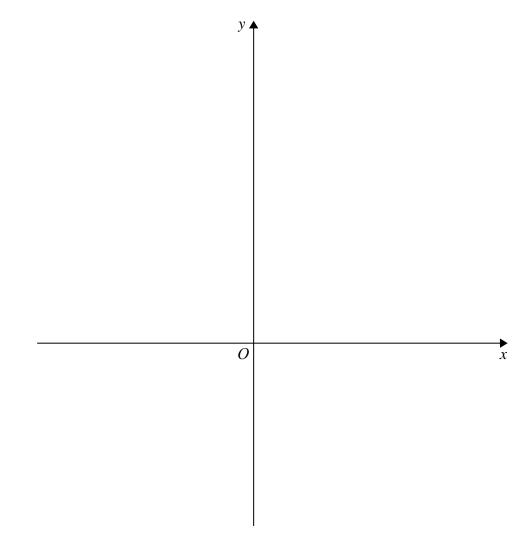
$$y = \frac{ax - 5}{x - b}$$

where a and b are integers, crosses the x-axis at the point (2.5, 0). The asymptote to C which is parallel to the y-axis has equation x = 1

- (a) (i) Show that a = 2
 - (ii) Find the value of b.

(3)

(b) Find the coordinates of the point where C crosses the y-axis.


(1)

(c) Find the equation of the asymptote to C which is parallel to the x-axis.

(1)

(d) Using the axes below, sketch the curve C showing clearly the asymptotes and the coordinates of the points where C crosses the coordinate axes.

(3)

	Question 7 continued
AREA	
ISAE	
T Z	
WRITEIN	
T WE	
NOT	
ă	
SEA A	
Z A	
WRITE IN THIS AREA	
<u> </u>	
M H	
O	
۵	
B. B. A.	
E A	
DO NOT WRITE IN THIS AREA	
0	
	(Total for Question 7 is 8 marks)

8 (a) Expand $\frac{3}{\sqrt{1-2x}}$ in ascending powers of x up to and including the term in x^3 and simplifying each term as far as possible.

(4)

(b) Write down the range of values of x for which this expansion is valid.

(1)

(c) Show that $\frac{3}{\sqrt{0.9}} = \sqrt{10}$

(1)

(d) Express $\frac{1}{\sqrt{10}-3}$ in the form $a\sqrt{10}+b$, where a and b are integers.

(2)

(e) Hence, using your expansion with a suitable value for x, obtain an approximation to 5 decimal places of $\frac{1}{\sqrt{10}-3}$

(3)

.....

Issue 1 - June 2016 © Pearson Education Limited 2016

	(Total for Question 8 is 11 marks)
3	

9 $f(x) = 7 + 4x - 2x^2$ Given that f(x) can be written in the form $P(x + Q)^2 + R$ where P, Q and R are constants, (a) find the value of P, the value of Q and the value of R. (3)(b) hence write down (i) the maximum value of f(x), (ii) the value of x for which this maximum occurs. (2) The curve C has equation $y = 7 + 4x - 2x^2$ The line *l* with equation y = 4 - x intersects *C* at two points. (c) Find the x coordinates of these two points. (3)The finite region bounded by the curve C and the line l is rotated 360° about the x-axis. (d) Use algebraic integration to find, to 3 significant figures, the volume of the solid generated. (5)

Question 9 continued	

Question 9 continued	

ı	
Н	Question 9 continued
ı	Question > continued
L	
L	
l	
l	
l	
l	
l	
l	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
l	
l	
l	
l	
l	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
l	
	(Total for Question 9 is 13 marks)

10

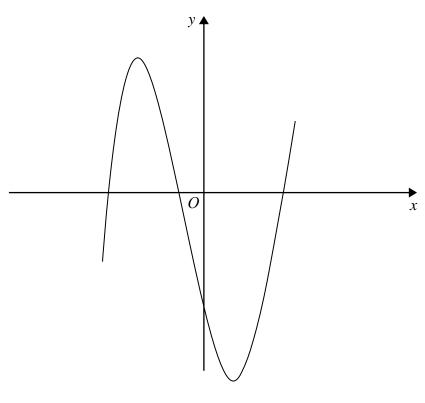


Figure 1

Figure 1 shows the curve M with equation $y = x^3 - 13x - 12$

The point P, with x coordinate -2, lies on M and line l_1 is the tangent to M at the point P.

(a) Find an equation for l_1

(5)

The point Q lies on M and the line l_2 is the tangent to M at the point Q.

Given that l_1 and l_2 are parallel,

(b) find an equation for l_2

(4)

The normal to M at P meets l_2 at the point R.

(c) Find the coordinates of R.

(4)

(d) Find the exact length of the line PR.

(2)

The tangent and normal at P and the tangent and normal at Q form a rectangle.

(e) Find the exact area of this rectangle.

(3)

Question 10 continued

Question 10 continued	

	Question 10 continued
AREA	
SAF	
善	
Z	
WRITEIN	
M	
NOT	
0	
A H	
SA	
吾	
WRITE IN THIS AREA	
R E	
) H	
9	
00	
OO NOT WRITE IN THIS AREA	
N A	
Ŧ	
á	
2	
0	
	(Total for Question 10 is 18 marks)

11

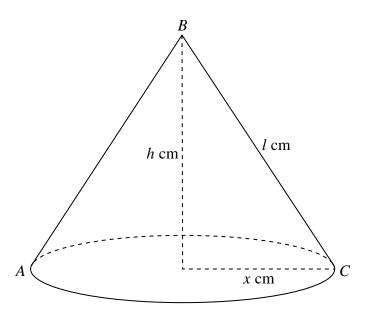


Diagram **NOT** accurately drawn

Figure 2

Figure 2 shows a right circular cone with a base radius of x cm. The slant height of the cone is l cm and the height of the cone is h cm. The vertex of the cone is B and the points A and C, on the base of the cone, are such that AC is a diameter of the base.

The cone is increasing in size in such a way that the size of the angle ABC is constant at 60° and the **total** surface area of the cone is increasing at a constant rate of $10 \text{ cm}^2/\text{s}$.

Find the exact rate of increase of the volume of the cone when $x = 6$	(11)

Question 11 continued		

Question 11 continued	

Question 11 continued	
	(Total for Question 11 is 11 marks)
	(Iotal for Question II is II marks)
	TOTAL FOR PAPER IS 100 MARKS

BLANK PAGE